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Free Vibration Analysis of a Circular Plate with Multiple2

Circular Holes by Using the Multipole Trefftz Method3

Wei-Ming Lee1 and Jeng-Tzong Chen2
4

Abstract: This paper presents the multipole Trefftz method to derive an analyt-5

ical model describing the free vibration of a circular plate with multiple circu-6

lar holes. Based on the addition theorem, the solution of multipoles centered at7

each circle can be expressed in terms of multipoles centered at one circle, where8

boundary conditions are specified. In this way, a coupled infinite system of simul-9

taneous linear algebraic equations is derived for the circular plate with multiple10

holes. The direct searching approach is employed in the truncated finite system to11

determine the natural frequencies by using singular value decomposition (SVD).12

After determining the unknown coefficients of the multipole representation for the13

displacement field, the corresponding natural modes are determined. Some nu-14

merical eigensolutions are presented and further utilized to explain some physical15

phenomenon such as the dynamic stress concentration. No spurious eigensolutions16

can be found in the proposed formulation. Excellent accuracy, fast rate of con-17

vergence and high computational efficiency are the main features of the present18

method thanks to the analytical procedure.19

Keywords: free vibration, plate, the multipole Trefftz method, addition theorem,20

SVD21

1 Introduction22

Circular plates with multiple circular holes are widely used in engineering struc-23

tures [Khurasia and Rawtani (1978)], e.g. missiles, aircraft, etc., either to reduce24

the structure weight or to increase the range of inspection. In addition, the rotating25

machinery such as disk brake system, circular saw blades, and hard disk for data26

storage is the practical application for the title problem [Tseng and Wickert (1994)].27
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These holes in the structure usually cause the change of natural frequency as well as28

the decrease of load carrying capacity. It is important to comprehend the associated29

effects on the work of mechanical design or the associated controller design. As30

quoted by Leissa [Leissa and Narita (1980)]: "the free vibrations of circular plates31

have been of practical and academic interest for at least a century and a half", we32

revisit this problem by proposing an analytical approach in this paper.33

Over the past few decades, most of the researches have focused on the analytical34

solutions for natural frequencies of the circular or annular plates [Vogel and Skin-35

ner (1965); Vera, Sanchez, Laura and Vega (1998); Vega, Vera, Sanchez, and Laura36

(1998); Vera, Laura and Vega (1999)]. Recently, some researchers intended to ex-37

tend an annular plate to a circular plate with an eccentric hole. Cheng et al. [Cheng,38

Li, and Yam (2003)] encountered difficulty and resorted to finite element method39

to implement the vibration analysis of annular-like plates due to the complicated40

expression for this kind of plate. Laura et al. [Laura, Masia, and Avalos (2006)]41

determined the natural frequencies of circular plate with an eccentric hole by using42

the Rayleigh-Ritz variational method where the assumed function does not satisfy43

the natural boundary condition in the inner free edge. Lee et al. [Lee, Chen and44

Lee (2007); Lee and Chen (2008a)] proposed a semi-analytical approach to the45

free vibration analysis of a circular plate with multiple holes by using the indirect46

boundary integral method and the null field integral equation method, respectively.47

They pointed out that some results of Laura [Laura, Masia, and Avalos (2006)]48

are not accurate enough after careful comparisons. However spurious eigenval-49

ues occur even though the complex-valued kernel function is employed, when the50

boundary method (BEM) or the boundary integral equation method (BIEM) is used51

to solve the eigenproblem [Lee and Chen (2008a)]. It is well known that spurious52

and fictitious frequencies stem from the non uniqueness of solution. Specifically,53

spurious eigenvalues arise from the incomplete solution representation such as the54

real-part BEM, multiple reciprocity method. Therefore how to construct the com-55

plete solution representation and to keep spurious eigenvalue away is our concern.56

The Trefftz method was first presented by Trefftz in 1926 [Trefftz (1926)]. On57

the boundary alone, this method proposed to construct the solution space using58

trial complete functions which satisfy the given differential equation [Kamiya and59

Kita (1995)]. Just as BEM, BIEM or the method of fundamental solution [Reut-60

skiy (2005); Alves and Antunes (2005); Chen, Fan, Young, Murugesan and Tsai61

(2005); Reutskiy (2006); Reutskiy (2007)], Trefftz method is also categorized as62

the boundary-type method which can reduce the dimension of the original prob-63

lem by one. Consequently the number of the unknowns is much less than that of64

the domain type methods such as finite difference method (FDM) or finite element65

method (FEM). Moreover the Trefftz formulation is regular and free of the prob-66
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lem of improper boundary integrals. However, almost all the problems solved by67

using Trefftz method are limited to the simply-connected domain. The extension to68

problems with holes, i.e. multiply-connected domain, is our concern in this paper.69

The concept of multipole method to solve multiply-connected domain problems70

was firstly devised by Záviška [Záviška (1913)] and used for the interaction of71

waves with arrays of circular cylinders by Linton and Evans [Linton and Evans72

(1990)]. Recently, one monograph by Martin [Martin (2006)] used these and other73

methods to solve problems of the multiple scattering in acoustics, electromag-74

netism, seismology and hydrodynamics. However, the biHelmholtz interior prob-75

lem with the fourth order differential equation was not mentioned therein.76

This paper proposed the multipole Trefftz method to solve plate problems with77

the multiply-connected domain in an analytical way. When considering a circular78

plate with multiple circular holes, the transverse displacement field is expressed as79

an infinite sum of multipoles at the center of each circle, including an outer circu-80

lar plate and several inner holes. By using the addition theorem, it is transformed81

into the same coordinate centered at the corresponding circle, where the boundary82

conditions are specified. According to the specified boundary conditions, a cou-83

pled infinite system of simultaneous linear algebraic equations is obtained. Based84

on the direct searching approach [Kitahara (1985)], the nontrivial eigensolution85

can be determined by finding the zero determinant of the truncated finite system86

through the technique of singular value decomposition (SVD). After determining87

the unknown coefficients, the corresponding natural modes can be obtained. Sev-88

eral numerical examples are presented and the proposed results of a circular plate89

with one or three circular holes are compared with those of the semi-analytical so-90

lutions [Lee and Chen (2008a)] and the FEM using the ABAQUS. Since BIEM or91

BEM results in spurious eigenvalues for problems with holes, the appearance of92

spurious solution by using the present method will be examined here. In addition,93

the results of eigensolution for the plate with two holes can be used to account for94

the dynamic stress concentration which occurs in the area between two holes when95

they are close to each other.96

2 Problem statement of plate eigenproblem97

A uniform thin circular plate with H circular holes centered at the position vector
Ok (k = 0, 1, . . . , H and O0 is the position vector of the center of the outer circular
plate) has a domain Ω which is enclosed with boundary

B =
H[

k=0

Bk; (1)
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as shown in Figure 1, where Rk denotes the radius of the kth circle. The governing
equation of the free flexural vibration for this plate is expressed as:

∇4w(x) = λ
4w(x); x 2Ω; (2)

where ∇4 is the biharmonic operator, w is the lateral displacement, λ 4 =ω2ρ0h=D,98

λ is the dimensionless frequency parameter, ω is the circular frequency, ρ0 is the99

volume density, h is the plate thickness, D= Eh3=12(1�µ2) is the flexural rigidity100

of the plate, E denotes the Young’s modulus and µ is the Poisson’s ratio.101
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Figure 1: Problem statement for an eigenproblem of a circular plate with multiple
circular holes

The solution of Eq. (2) in the polar coordinate can be represented as

w(ρ;ϕ) = w1(ρ;ϕ)+w2(ρ;ϕ); (3)

where w1(ρ;ϕ) and w2(ρ;ϕ) are solutions of the following equations, respectively,

∇2w1(ρ;ϕ)+λ
2w1(ρ;ϕ) = 0; (4)

∇2w2(ρ;ϕ)�λ
2w2(ρ;ϕ) = 0: (5)

Eqs. (4) and (5) are the so-called Helmholtz equation and the modified Helmholtz
equation, respectively. From solutions of Eqs. (4) and (5), the solution for Eq.(3)
can be explicitly expressed in series form as follows:

w(ρ;φ) =
∞

∑
m=�∞

w̃m(ρ)e
imφ ; (6)
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where w̃m(ρ) is defined by

w̃m(ρ) = c1Jm(λρ)+ c2Ym(λρ)+ c3Im(λρ)+ c4Km(λρ); (7)

in which ci (i = 1, 4) are the coefficients, Jm andYm are the mth order Bessel func-102

tions; and Im and Km are the mth order modified Bessel functions. Based on the103

characteristics of functions at r=0 and r! ∞, the appropriate Bessel function and104

the modified Bessel are chosen to represent the transverse displacement field for105

the outer circular plate and the inner circular holes.106

The radial slope, bending moment and effective shear force are related to the trans-
verse displacement by

θ(ρ;φ) =
∂w(ρ;φ)

∂ρ
; (8)

m(ρ;φ) = µ∇2w(ρ;φ)+(1�µ)
∂ 2w(ρ;φ)

∂ρ2 ; (9)

v(ρ;ϕ) =
∂

∂ρ

�
∇2w(ρ;ϕ)

�
+(1�µ)

�
1
ρ

�
∂

∂ϕ

�
∂

∂ρ

�
1
ρ

∂w(ρ;ϕ)
∂ϕ

��
: (10)

3 Analytical derivations for the eigensolutions of a circular plate with multi-107

ple circular holes108

Considering a circular plate with H circular holes, the lateral displacement of Eq.
(3) can be explicitly expressed as an infinite sum of multipoles at the center of each
circle,

w(x;ρ0;φ0;ρ1;φ1; :::;ρH ;φH) =
∞

∑
m=�∞

�
a0

mJm(λρ0)e
imφ0 +b0

mIm(λρ0)e
imφ0

�

+
H

∑
k=1

"
∞

∑
m=�∞

ak
mH(1)

m (λρk)e
imφk +bk

mKm(λρk)e
imφk

#
; (11)

where (ρ0;ϕ0), (ρ0;ϕ0), . . . , (ρH ;ϕH) are the corresponding polar coordinates for109

the field point x with respect to each center of circle. The coefficients of ak
m and110

bk
m, k=0,. . . , H; m=0, �1, �2, . . . can be determined by applying the boundary111

condition on each circle. The Bessel function J and the modified Bessel function112

I are chosen to represent the outer circular plate due to the request of finite value113

at r=0. For the inner holes, the Hankel function (J+iY) and the modified Bessel114

function K are taken for their values being finite as r! ∞.115
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Based on the Graf’s addition theorem for the Bessel functions given in [Watson
(1995)], we can express the theorem in the following form,

Jm(λρk)e
imφk =

∞

∑
n=�∞

Jm�n(λ rkp)e
i(m�n)θkpJn(λρp)e

inφp ; (12)

Im(λρk)e
imφk =

∞

∑
n=�∞

Im�n(λ rkp)e
i(m�n)θkpIn(λρp)e

inφp ; (13)

H(1)
m (λρk)e

imϕk =

8><
>:

∞
∑

n=�∞
H(1)

m�n(λ rkp)ei(m�n)θkpJn(λρp)einϕp ;ρp < rkp

∞
∑

n=�∞
Jm�n(λ rkp)ei(m�n)θkpH(1)

n (λρp)einϕp ;ρp > rkp

; (14)

Km(λρk)e
imϕk =

8><
>:

∞
∑

n=�∞
(�1)nKm�n(λ rkp)ei(m�n)θkpIn(λρp)einϕp ; ρp < rkp

∞
∑

n=�∞
(�1)m�nIm�n(λ rkp)ei(m�n)θkpKn(λρp)einϕp ; ρp > rkp

;

(15)

where (ρp;φp) and (ρk;ϕk) in Fig. 2 are the polar coordinates of a field point x with116

respect to Op and Ok, respectively, which are the origins of two polar coordinate117

systems and (rpk;θpk) are the polar coordinates of Ok with respect to Op.118

By substituting the addition theorem of the Bessel functions H(1)
m (λρk) and Km(λρk)into

Eq. (11), the displacement field near the circular boundary B0 under the condition
of ρ0 > rk0 can be expanded as follows:

w(x;ρ0;φ0) =
∞

∑
m=�∞

�
a0

mJm(λρ0)e
imφ0 +b0

mIm(λρ0)e
imφ0

�

+
H

∑
k=1

"
∞

∑
m=�∞

ak
m

∞

∑
n=�∞

Jm�n(λ rk0)e
i(m�n)θk0H(1)

n (λρ0)e
inφ0

+bk
m

∞

∑
n=�∞

(�1)m�nIm�n(λ rk0)e
i(m�n)θk0Kn(λρ0)e

inφ0

#
: (16)
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Figure 2: Notation of the Graf’s addition theorem for Bessel functions

Furthermore, Eq. (16) can be rewritten as

w(x;ρ0;φ0)

=
∞

∑
m=�∞

eimφ0

*
Jm(λρ0)a

0
m+ Im(λρ0)b

0
m

+
H

∑
k=1

"
∞

∑
n=�∞

Ak
mn(λρ0)a

k
n+

∞

∑
n=�∞

Bk
mn(λρ0)b

k
n

#+
; (17)

where

Ak
mn(λρ0) = ei(n�m)θk0Jn�m(λ rk0)H

(1)
m (λρ0); (18)

Bk
mn(λρ0) = (�1)n�mei(n�m)θk0In�m(λ rk0)Km(λρ0): (19)

By differentiating Eq. (17) with respect toρ0, the slope θ near the circular boundary
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B0 is given by

θ(x;ρ0;φ0) =
∞

∑
m=�∞

eimφ0

*
λJ0m(λρ0)a

0
m+λ I0m(λρ0)b

0
m

+
H

∑
k=1

"
∞

∑
n=�∞

Ck
mn(λρ0)a

k
n+

∞

∑
n=�∞

Dk
mn(λρ0)b

k
n

#+
; (20)

where Ck
mn(kρ0) and Dk

mn(kρ0) are obtained by differentiating Ak
mn(kρ0) and Bk

mn(kρ0)119

in Eqs. (18) and (19) with respective to ρ0.120

By substituting Eq. (11) into Eq. (9) and applying the addition theorem under the
condition ρp < rkp, the field of bending moment, m(x), near the circular boundary
Bp (p = 1,. . . , H) can be expanded as follows:

m(x;ρp;φp) =
∞

∑
m=�∞

eimφp

*
E p

m(λρp)a
p
m+F p

m (λρp)b
p
m

+
H

∑
k = 0
k 6= p

"
∞

∑
n=�∞

Ek
mn(λρp)a

k
n+

∞

∑
n=�∞

Fk
mn(λρp)b

k
n

#+
; (21)

where

E p
m(λρp) = α

J
m(λρp)+ iαY

m(λρp); (22)

F p
m (λρp) = α

K
m (λρp); (23)

Ek
mn(λρp) =

(
ei(n�m)θkpαJ

m(λρp)Jn�m(λ rkp); k = 0

ei(n�m)θkpαJ
m(λρp)H

(1)
n�m(λ rkp); k 6= 0; p

; (24)

Fk
mn(λρp) =

(
ei(n�m)θkpα I

m(λρp)In�m(λ rkp); k = 0

(�1)mei(n�m)θkpα I
m(λρp)Kn�m(λ rkp); k 6= 0; p

; (25)

in which the moment operator αX
m(λρ) from Eq. (9) is defined as

α
X
m(λρ) = D

�
(1�µ)

X 0

m(λρ)

ρ
�

�
(1�µ)

m2

ρ2 �λ
2
�

Xm(λρ)

�
; (26)

where the upper (lower) signs refer to X= J, Y , (I, K), respectively. The differential121

equations of the Bessel function have been used to simplify αX
m(λρ).122
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Similarly, the effective shear operator β X
m (λρ) derived from Eq. (10) can be ex-

pressed as shown below:

β
X
m (λρ) = D

��
m2(1�µ)� (λρ)2� X 0

m(λρ)

ρ2 �m2 (1�µ)
Xm(λρ)

ρ3

�
; (27)

and the field of effective shear, v(x), near the circular boundary Bp (p = 1,. . . , H)
can be given by

v(x;ρp;φp) =
∞

∑
m=�∞

eimφp

*
Gp

m(λρp)a
p
m+H p

m(λρp)b
p
m

+
H

∑
k = 1
k 6= p

"
∞

∑
n=�∞

Gk
mn(λρp)a

k
n+

∞

∑
n=�∞

Hk
mn(λρp)b

k
n

#+
; (28)

where Gp
m(λρp),H

p
m(λρp),Gk

mn(λρp)and Hk
mn(kρp) are obtained by replacing αX

m(λρp)123

in Eqs. (22)-(25) with β X
m (λρp).124

For an outer clamped circular plate (u = θ = 0) containing multiple circular holes
with the free edge (m= v = 0), applying the orthogonal property of {eimφP} to
Eqs.(17), (20), (21) and (28), respectively, and setting ρp equal to Rp give

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Jm(λR0)a0
m+ Im(λR0)b0

m�
H
∑

k=1

�
∞
∑

n=�∞
Ak

mn(λR0)ak
n+

∞
∑

n=�∞
Bk

mn(λR0)bk
n

�
= 0

λJ0m(λR0)a0
m+λ I0m(λR0)b0

m�
H
∑

k=1

�
∞
∑

n=�∞
Ck

mn(λR0)ak
n+

∞
∑

n=�∞
Dk

mn(λR0)bk
n

�
= 0

E p
m(λRp)a

p
m+F p

m (λRp)b
p
m+

H
∑

k = 0

k 6= p

�
∞
∑

n=�∞
Ek

mn(λRp)ak
n+

∞
∑

n=�∞
Fk

mn(λRp)bk
n

�

= 0

Gp
m(λRp)a

p
m+H p

m(λRp)b
p
m+

H
∑

k = 0

k 6= p

�
∞
∑

n=�∞
Gk

mn(λRp)ak
n+

∞
∑

n=�∞
Hk

mn(λRp)bk
n

�

= 0

;

(29)

for m=0,�1,�2, . . . , n=0,�1,�2, . . . , and p= 1, . . . , H. Eq. (29) is a coupled infi-125

nite system of simultaneous linear algebraic equations which is the analytical model126
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for the free vibration of a clamped circular plate containing multiple holes with the127

free edge. In order to evaluate the numerical results in the following section, the in-128

finite system of Eq. (29) is truncated to a (H+1)(2M+1) finite system of equations,129

i.e. m=0, �1, �2, . . . ., �M. According to the direct-searching scheme, the natural130

frequencies are determined as the minimum singular value of the truncated finite131

system by using the SVD technique. Once the eigenvectors (i.e. the coefficients132

ak
m and bk

m, k=0,. . . , H; m=0, �1, �2,. . . , �M) are found, the associated natural133

modes can be obtained by substituting them into the multipole representation for134

the transverse displacement of Eq.(11).135

4 Numerical results and discussions136

To demonstrate the validity of the proposed method, the FORTRAN code was im-137

plemented to determine natural frequencies and modes of a circular plate with mul-138

tiple circular holes. The same problem was independently solved by using the FEM139

(the ABAQUS software) for comparison. In all cases, the inner boundary is subject140

to the free boundary condition. The thickness of plate is 0.002m and the Poisson’s141

ratio µ=1/3. The general-purpose linear triangular elements of type S3 were em-142

ployed to model the plate problem by using the ABAQUS software. Although the143

thickness of the plate is 0.002 m, these elements do not suffer from the transverse144

shear locking based on the theoretical manual of ABAQUS.145

Case 1: A circular plate with an eccentric hole [Lee and Chen (2008a)]146

A clamped circular plate containing an eccentric hole with a free edge as shown147

in Fig. 3 is considered. The lower seven natural frequency parameters versus the148

number of coefficients in Eq. (11), N(2M+1), are shown in Fig. 4. It can be seen149

that the proposed solution converges fast by using only a few numbers of coeffi-150

cients. Values of m and n in the mode (m;n) [Lee and Chen (2008a)] shown in Fig.151

4 are numbers of diametrical nodal lines and circular nodal lines, respectively. For152

the mode (m, 0) in Fig. 4, two corresponding modes are clearly distinguished by153

the subscript. The subscript 1 denotes the straight diametrical nodal line, while the154

subscript 2 denotes the curved diametrical nodal line [Lee and Chen (2008a)]. It155

indicates that the required number of coefficients equals to that of diametrical nodal156

lines except to the mode with the subscript 2 due to the more complicated configu-157

ration. That is the reason why the higher mode (1, 1) can be roughly predicted by158

using only M=1 (or N=3). Figure 5 indicates the minimum singular value of Eq.159

(29) versus the frequency parameterλ when using thirteen numbers of coefficients160

(N=13). Since the direct-searching scheme is used, the drop location indicates the161

eigenvalue. No spurious eigenvalue is found by using the present method. The162

FEM was employed to solve the same problem and its model needs 164580 ele-163

ments and 83023 nodes to obtain acceptable results for comparison. The lower six164
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Case 1: 
 
Geometric data: 
R0=1m 
R1=0.4m 
e=0.5m 
thickness=0.002m 
Boundary condition: 
Inner circle : free 
Outer circle: clamped 
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Figure 3: A clamped circular plate containing an eccentric hole with a free edge
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 Figure 4: Natural frequency parameter versus the number of coefficients of the
multipole representation for a clamped circular plate containing an eccentric hole
with a free edge (R0=1.0, R1=0.4 and e=R0=0.5)
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 Figure 5: The minimum singular value versus the frequency parameter for a

clamped circular plate containing an eccentric hole with a free edge (R0=1.0,
R1=0.4 and e=R0=0.5)

natural frequency parameters and modes by using the present method, the semi-165

analytical method [Lee, Chen and Lee (2007)] and the FEM are shown in Fig.166

6. The results of the present method match well with those of FEM by using the167

ABAQUS software.168

Case 2: A circular plate with two holes169

To investigate the hole-hole interaction, a circular plate containing two identical170

holes with various ratio of L=a shown in Fig. 7 is studied, where a is the radius of171

circular holes and L is the central distance of two holes. The radii of the circular172

plate and the circular hole are 1 m and 0.1 m and the dimensionless distance of two173

holes L=a is chosen as 2.1, 2.5 and 4.0 in the numerical experiments. From the174

numerical results, the space of two holes has a minor effect on the lower natural175

frequency parameters. Figure 8 is the fundamental natural mode for the cases of176

L=a=2.1 and L=a=4.0. It can be seen that the zone of the maximum deformation,177

enclosed with the dashed line, for the case of L=a=2.1 is significantly less than178

that of L=a=4.0. It can account for the dynamic stress concentration in the case179

of L=a=2.1 [Lee and Chen (2008b)] because the distortion energy caused by the180

external loading concentrates in the smaller area.181
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Case 2: 
 
Geometric data:  
R0=1m 
a=0.1m 
thickness=0.002m 
Boundary condition: 
Inner circle : free 
Outer circle: clamped 

 

R0 

a 

a 
O0 

O2 

O1 

L 

Figure 7: A clamped circular plate containing three holes with free edges

  
(a) Natural frequency parameter=3.1720 (b) Natural frequency parameter=3.1800 

 
Figure 8: Natural frequency parameter versus the number of coefficients of the
multipole representation for a clamped circular plate containing three holes with
free edges
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Case 3: 
Geometric data: 
R0=1m 
R1=0.4m 
R2=0.2m 
R3=0.2m 
O0=(0.0,0.0) 
O1=(0.5,0.0) 
O2=(-0.3,0.4) 
O3=(-0.3,-0.4) 
thickness=0.002m 
Boundary condition: 
Inner circles: free 
Outer circle: clamped, 

 Figure 9: The minimum singular value versus the frequency parameter for a
clamped circular plate containing three holes with free edges
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 Figure 10: The lower six natural frequency parameters and mode shapes for a
clamped circular plate containing three holes with free edge by using the present
method, semi-analytical method and FEM
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 Figure 11: The minimum singular value versus the frequency parameter for a

clamped circular plate containing three holes with free edges

Case 3: A circular plate with three holes [Lee and Chen (2008a)]182

In order to demonstrate the generality of the present method, a circular plate with183

three holes is considered as shown in Fig 9. The lower six natural frequency pa-184

rameters versus the number of coefficients in Eq. (11) are shown in Fig. 10. When185

the number of holes increases, the fast convergence rate can still be observed. The186

fourth mode shows a lower convergence rate due to the complex geometrical con-187

figuration. Figure 11 indicates the minimum singular value of Eq. (29) versus the188

frequency parameter λ when using thirteen terms of Fourier series (N=13). There189

is no spurious eigenvalue [Lee and Chen (2008a)] since zero divided by zero is190

analytically determined in the present method. To achieve the satisfactory solution191

for comparison, the model of FEM needs 308960 elements. The lower six natural192

frequency parameters and modes by using the present method, the semi-analytical193

method [Lee and Chen (2008a)] and the FEM are shown in Fig. 12. Good agree-194

ment between the results of the present method and those of ABAQUS is observed.195
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5 Concluding remarks196

By using the addition theorem, the multipole Trefftz method has successively de-197

rived an analytical model for a circular plate containing multiple circular holes.198

According to the specified boundary conditions, a coupled infinite system of si-199

multaneous linear algebraic equations was derived without any approximation. By200

using the direct-searching method, natural frequencies and natural modes of the201

stated problem were given in the truncated finite system. The proposed results202

match well with those provided by the FEM with more fine mesh to obtain accept-203

able data for comparison. No spurious eigenvalue occurs in the present formula-204

tion. Moreover, the proposed eigensolutions have attempted explanations for the205

dynamic stress concentration when two holes are close to each other. Numerical206

results show good accuracy and fast rate of convergence thanks to the analytical207

approach.208
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